Std form -> (x-h)^2/a^2 + (y-k)^2/b^2 = 1 64x^2 + 49y^2 – 768x – 686y + 1569 = 0 64x^2 – 768x + 2304 + 49y^2 – 686y + 2401-3136 = 0 64(x^2-12x+36)+49(y^2-14y+49)-3136 = 0 64(x-6)^2+49(y-7)^2=3136 (x-6)^2/7^2+(y-7)^2/8^2=1 Center @ (h, k): (6,7) Vertices @ +/- y where x=6: y^2-14y+49=64 y^2-14y-15=0 (y+1)(y-15)=0 y = (-1 and 15); therefore vertices @ (6,-1) & (6,15) for the major axis Vertices @ +/-x where y=7: x^2-12x+36=49 x^2-12x-13=0 (x-13)(x+1)=0 x = (-1 and 13); therefore vertices @ (7,-1) & (7,13) for the minor axis focii (a^2-b^2=c^2): 64-49=c^2 15=c^2; therefore focii are (6, 7+SQRT(15)) & (6,7-SQRT(15)) Eccentricity = SQRT(15)/8 How many are wrong this time? I think I double-checked it all...?